
Physica B 296 (2001) 56}61

Energy-density CPA: a new e!ective medium theory
for classical waves

Kurt Busch��*, Costas M. Soukoulis�

�Institut fu( r Theorie der Kondensierten Materie, Universita( t Karlsruhe, P.O. Box 6980, 76128 Karlsruhe, Germany
�Department of Physics and Ames Laboratory, Iowa State University, Ames, IA 50011, USA

Abstract

We present the framework of an e!ective medium theory to calculate the transport properties of classical waves in
disorderedmedia, Busch and Soukoulis (Phys. Rev. Lett. 75 (1995) 3442). It is based on the principle that the wave energy
density should be uniform when averaged over length scales larger than the size of the basic scattering unit and can,
therefore, be applied to electromagnetic, Busch and Soukoulis (Phys. Rev. B 54 (1996) 893); Kirchner et al. (Phys. Rev.
B 57 (1998) 277) as well as elastic waves, Kafesaki and Economou (Europhys. Lett. 37 (1997) 7); Soukoulis et al. (Phys.
Rev. Lett. 82 (1999) 2000). Within this energy-density CPA (ECPA) resonant scattering of the individual scatterer is
treated exactly, and by using a coated sphere as the basic scattering unit, multiple scattering contributions are
incorporated in a mean-"eld sense. In the long-wavelength limit we are able to calculate e!ective material properties
exactly. Results for the mean-free path, transport velocity, and the di!usion coe$cient for "nite frequencies agree
qualitatively and quantitatively with experiment for all densities of scatterers, Busch and Soukoulis (Phys. Rev. B 54
(1996) 893); Gomez et al. (Europhys. Lett. 48 (1999) 22). A study of the localization parameter kM l

�
within this

e!ective-medium approach allows to identify the optimal parameters for localization, Kirchner et al. (Phys. Rev. B 57
(1998) 277). � 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In recent years there has been a growing interest
in the study of the propagation of classical waves in
random media [8] that was largely driven by the
prospect of observing Anderson localization [7] of
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light in those systems. As a consequence, funda-
mental aspects of our understanding of multiple
scattering of waves such as the scaling theory of
localization could be addressed both experi-
mentally and theoretically in a clean system.
Early theoretical work [9}11] indicated the

existence of Anderson localization of classical
waves for an intermediate frequency range. In this
so-calledMie scattering regime, the wavelength � of
the wave is comparable to the scatterers extent d,
leading to large scattering cross sections of the
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individual scatterer. However, soon after experi-
mental investigations along these lines [12,13] had
reported very low values of the di!usion coe$cient
D, it became clear that, unlike electronic systems,
there exists another renormalization mechanism to
the di!usion coe$cient D for classical waves [14].
The presence of resonant scatterers may cause the
energy transport velocity v

�
to decrease sharply

close to the single-scatterer resonances. This renor-
malized transport velocity enters the three-dimen-
sional di!usion coe$cient via D"v

�
l
�
/3, where

l
�
is the transport mean-free path. The renormaliz-

ation of v
�
and thus of D can be regarded as a

scattering delay due to temporal storage of wave
energy inside the scatteres. However, the onset of
Anderson localization manifests itself in low values
of the transport mean-free path l

�
, and, therefore,

considerable care had and has to be exercised when
interpreting low values of the di!usion coe$cient
D for classical wave systems and a reliable theory
for calculating transport quantities even `justa for
the di!usive regime in the presence of resonant
scattering is called for.
In the "rst part of this contribution we outline

a very successful e!ective medium theory within the
framework of which transport properties such as
di!usion coe$cient D, energy transport velocity
v
�
and transport mean-free path l

�
for di!using

classical waves can be calculated. The main results
and predictions such as a study of the localization
parameter kM l

�
, kM being the renormalized wavevec-

tor and l
�
the scattering mean-free path are sum-

marized in the second part. At this point, we want
to stress that this e!ective medium theory can be
applied to a great variety of problems in the "eld of
classical wave propagation.

2. The new e4ective medium theory

Consider a composite medium consisting of ran-
domly placed lossless spheres with diameter d"2R
and dielectric constant �

�
embedded within a loss-

less host material with dielectric constant �
�
. The

random medium is characterized also by f, the
volume fraction occupied by the spheres. The basic
idea of any e!ective medium theory of disordered
systems is to focus on one particular scatterer and

to replace the surrounding random medium by an
e!ective homogeneous medium. The e!ective me-
dium is determined self-consistently by taking into
account the fact that any other scatterer could have
been chosen. This procedure manifests the homo-
geneity of the random medium on average.
However, the position of a spheres in the medium

is completely random, with the exception that they
cannot overlap. This implies that the distribution
P(R) of spacings between neighboring spheres is
sharply peaked at a distance R

�
'R. If we approx-

imate this distribution by a �-function, i.e.,
P(R)J�(R

�
!R) and take into account the on-

average isotropy of the random medium, we may
consider a coated sphere as the basic scattering
unit. The radius R

�
of the coated sphere is R

�
"

R/f���. The dielectric constants of the core and the
coating are �

�
and �

�
, respectively. Using a coated

sphere as the basic scattering unit also incorporates
some of the multiple scattering e!ects at di!erent
centers.
The use of a coated sphere as the basic scattering

unit also implies that the homogeneity of the en-
ergy density is not anymore ful"lled. This fact has
not been taken into account in approaches that
exploit the analogy between classical and electronic
wave propagation [15}17] and, as a consequence,
lead to unphysical results for the transport velocity.
Therefore, in the new e!ective medium theory
[1}3] we explicitly chose the averaged energy den-
sity homogeneity as the criterion for determining
the e!ective medium. Since we are exclusively con-
sidering lossless dielectrics the e!ective medium
dielectric constant �� has to be real due to energy
conservation. This is in contrast to the conven-
tional approaches [15}17] and forces us to proceed
in two steps: Firstly, we determine for every fre-
quency � the real e!ective dielectric constant �� by
demanding the energy density to be homogeneous
on scales larger than the basic scattering unit
(coated sphere). Then, in a second step, the physical
quantities are calculated from the (now non-vanish-
ing) scattering cross sections. In this theory all
multiple scattering e!ects are contained in the e!ec-
tive dielectric constant and, thus, we may consider
the random medium consisting of independent
scattering units, i.e., coated spheres, embedded in
the e!ective medium. Fig. 1 schematically depicts
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Fig. 1. In a randommedium composed of spheres with dielectric
constant �

�
immersed in a host medium with dielectric constant

�
�
, the basic scattering unit may be, on average, regarded as

a coated sphere, as represented by the dashed lines. To calculate
the e!ective dielectric constant, �� , a coated sphere of radius
R

�
"R/f���, is embedded in a uniform medium. The self-consis-

tent condition for the determination of �� is that the energy of
a coated sphere is equal to the energy of a sphere with radius
R

�
and dielectric constant �� .

the reduction of the disordered medium to a de-
scription of independent coated spheres embedded
in the e!ective medium.
The requirement that the energy content of a

coated sphere embedded in the e!ective medium
and being hit by a plane wave, should be the same
as the energy stored by the plane wave in an equally
sized volume of the e!ective medium, can be for-
mulated quantitatively by the self-consistency
equation

�
��

�

d�r���	
�
(r)"�

��

�

d�r���	
�
(r). (1)

���	
�
(r) and ���	

�
(r) are the energy densities for

a coated sphere and a plane wave, respectively.
Clearly, this very general principle can be applied
to any kind of classical wave propagation, such as,
e.g., elastic waves [4,5].

In the electromagnetic (EM) wave case, the en-
ergy density of EM waves with electric and mag-
netic "elds, E(r) and H(r), is given by

�
�
(r)"�

�
(�(r)�E(r)��#��H(r)��). (2)

Here, � is the magnetic permeability which is taken
to be the same in both materials. The speci"c form
of the scattered "elds inside the coating and the
core are given in Refs. [2,3]. Eq. (1) together with
Eq. (2) and the respective expressions for the "elds
determine the (real) dielectric constant �� of the
e!ective medium for every frequency.
As mentioned above, the transport quantities

velocity and the renormalized wave vector kM can be
calculated via [3,8]

v
�
K

c

���
�1!Re(�)/k�

�
, (3)

l
�
"

1

�2 Im(�)
[(k�

�
!Re(�))

#�(k�
�

!Re(�))�#(Im(�))�]���, (4)

kM "
1

�2
[(k�

�
!Re(�))

#�(k�
�

!Re(�))�#(Im(�))�]���. (5)

The self-energy � is evaluated in the independent
scatterer approximation:

�"n tkk(�), (6)

where, tkk

(�) denotes the t-matrix of a coated

sphere embedded in the e!ective medium, �k�"k
�

and n"1/R�
�
is the density of scatterers.

In addition, we approximate the transport
mean-free path l

�
by the scattering mean-free path

l
�
, i.e., l

�
+l

�
. Then, the three-dimensional di!u-

sion constant D is given by D"v
�
l
�
/3. This ap-

proximation is supported by the fact that, as
a mean-"eld theory, the ECPA is unable to make
detailed predictions close to the Anderson
transition where the distinction between scattering
and transport mean-free path would become im-
portant. In addition, previous studies of the trans-
port and scattering mean-free paths [16] obtained
results consistent with this approximation.
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Fig. 2. The frequency dependence of the di!usion constant for
a sample of �

�
-in. polystyrene spheres with index of refraction

1.59 and "lling ratio f"0.59. The "lled circles correspond to the
experimental values, whereas the crosses are the results of the
new e!ective medium theory [2].

3. Results

3.1. Long wavelength limit

In the long wavelength limit, we may de"ne a fre-
quency independent, long-wavelength dielectric
constant �

�
according to

�
�

" lim
��� �

c

v
�
(�)�

�
. (7)

It is well known [8] that for scalar classical waves
the correct result for �

�
is given by the volume

averaged dielectric constant, whereas in the case of
vector classical waves it is Maxwell}Garnett theory
which gives the right answer. An analytical calcu-
lation [2,3] of �

�
within the new e!ective medium

theory, according to Eq. (7), proceeds straightfor-
wardly by computing �� for �P0 from Eq. (1) using
a Taylor expansions of all quantities involved to
extract the leading order in �. Indeed, in the case of
scalar classical waves we obtain as the long-
wavelength dielectric constant the volume average
of �

�
and �

�
, i.e.,

�
�

,�� ,f�
�
#(1!f )�

�
. (8)

This result originates from the fact that for scalar
waves s-wave scattering dominates in the long
wavelength limit. In the case of the EM waves,
however, s-wave scattering is absent and a careful
analysis [2,3] of the dominant p-wave scattering for
long wavelengths leads to the Maxwell}Garnett
result, i.e.,

�
�

"�� "�
��1#

3 f	
1!f	�, (9)

where the depolarization factor 	 of a sphere is
given by 	"(�

�
!�

�
)/(�

�
#2�

�
).

3.2. Finite frequencies

For "nite frequencies, of course, no analytical
solution of Eq. (1) is possible. Fortunately, it turns
out that Eq. (1) is numerically easy to deal with.
Fig. 2 shows a comparison between the di!usion

coe$cient D"v
�
l
�
/3 obtained within the e!ective

medium theory and experimental values of Genack
et al. [13]. Without adjustable parameters excellent

agreement is obtained between experiment and the
new e!ective medium theory. More detailed results
on the energy transport velocity and mean-free
paths within the ECPA can be found in [1}3,6].

3.3. Study of the localization parameter

The product kM l
�
, where kM is the renormalized

wave vector and l
�
the scattering mean-free path, is

a measure for the strength of the multiple scattering
e!ects. Here, we wish to recall that within the
e!ective medium theory we have l

�
+l

�
. For

values of kM l
�
K1 coherent backscattering notably

renormalizes the di!usion coe$cient and may ulti-
mately lead to a change in wave functions' nature
from extended to localized. This phenomenon,
commonly referred to as Anderson localization [7],
is a generic wave property and to date still repres-
ents a challenge to experiments: Recently, infrared
localization in GaAs powders was observed [18]
but the validity of these measurements has been
questioned by the possibility of absorption [19]. In
addition, experimental studies on similarly
strong scattering Si powders [6] have failed to
produce a signature of Anderson localization of
EM waves.
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Fig. 3. Contour plot of the localization parameter kM l
�
for elec-

tromagnetic waves in three dimensions in the direct structure
(�
�
'�

�
) for various "lling factors f and dielectric contrasts.

Fig. 4. Contour plot of the localization parameter kM l
�
for elec-

tromagnetic waves in three dimensions in the inverse structure
(�
�
'�

�
) for various "lling factors f and dielectric contrasts.

There exist various theories which provide local-
ization criteria for waves: if the value of kM l

�
falls

below a certain value, localization is achieved.
Probably, one of the most accurate among these is
the potential well analogy (PWA) [20], which sets
the critical value for kM l

�
to 0.844. Clearly, in

a mean-"eld theory like the ECPA no quantitative
statements as to when a wave system is crossing
from extended to localized can be made. However,
the value of the localization parameter kM l

�
can still

be evaluated and, as a function of the system para-
meters, may exhibit certain trends towards para-
meter values optimal for localization. In this spirit,
we have performed a systematic study of the local-
ization parameter kM l

�
as a function of the dielectric

contrast �
�
/�

�
and "lling fraction f for electromag-

netic waves for the direct (�
�
'�

�
) as well as for the

inverse structure (�
�
'�

�
). We assigned to every

parameter value combination the minimum of kM l
�

as a function of frequency. In this way we were able
to obtain contours of constant kM l

�
value as a func-

tion of dielectric contrast and "lling fraction. Figs.
3 and 4 show the results of this study for the direct
and inverse structure, respectively. We clearly ob-
tain that localization for EM waves may be easier

achieved for the inverse structure, where the opti-
mal "lling factor f is approximately around f+0.45
for the direct and f+0.7 for the inverse structure.
The fact that for a given dielectric contrast and
"lling ratio the localization parameter kM l

�
is much

lower in the inverse structure than in the direct
structure suggests that the inverse structure is
a much more strongly scattering system and may
be preferred when it comes to realizing Anderson
localization of EMwaves. In addition, this observa-
tion is consistent with the observation that in peri-
odic dielectric systems, the so-called photonic
crystals (PCs), inverted structures much more read-
ily exhibit complete photonic band gaps than is the
case for their direct counterpart [21].
The above-mentioned di!erence in localization

behavior between direct and inverse structure may
also account for the apparent absence of Anderson
localization in the Si powder experiment of Gomez
Rivas et al. [6] as compared to the GaAs powder
experiment of Wiersma et al. [18]: Despite the fact
that the refractive indices of Si and GaAs are al-
most equal and the volume fraction as well as the
size of the scatterers in the Si and GaAs sample
are comparable (and close to the optimal value
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predicted by ECPA), there still is a di!erent con-
nectivity between the particles. The shape of the
GaAs particles is not nearly as spherical as the
shape of the Si particles. Therefore, the GaAs
sample might be much closer to an inverse struc-
ture than is the Si sample. This possible explana-
tion of the di!erences seen in experiments [6] and
[18] is certainly not diminishing the importance of
having to separate the e!ects of localization and
absorption [19]. To this end, novel forms of dis-
order, such as the recently suggested thermally dis-
ordered liquid crystal director "eld in otherwise
isotropic silicon-based inverse opal PC [22] may
have to be investigated.

4. Discussion

In summary, the e!ective medium theory dis-
cussed in this work, the so-called ECPA, allows to
reliable calculate transport properties of disordered
classical wave systems. It can be applied to a wide
variety of wave propagation problems. In the long-
wavelength limit well-known results are redis-
covered. Without adjustable parameters, excellent
qualitative as well as quantitative agreement with
experiment is obtained. A study of the localization
parameter kM l

�
predicts optimal parameter ranges

for classical localization depending on the type of
wave (scalar or vector) and type of structure (direct
and inverse con"guration). Generally, localization
is favored in the inverse structure, since the local-
ization parameter kM l

�
takes on signi"cantly lower

values in those structure.
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